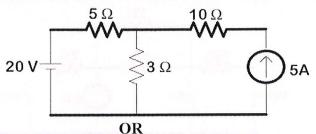


5 The full wave rectified sine wave shown in Figure has a delay angle of 60°. Calculate 12M the average value and RMS value.

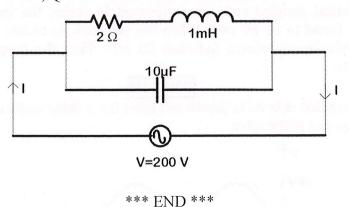

Q.P. Code: 19EE0201

OR

- A 50 Ω resistor is connected in series with a 25 μ F Capacitor across a 230V, 50HZ AC 6 **12M** Supply. Find
 - (a) Capacitive reactance
 - (b) Impedance
 - (c) Current
 - (d) Phase angle
 - (e) Voltage drop across resistance
 - (f) Voltage drop across Capacitance
 - (g) Power Factor.

UNIT-IV

Find the current passing through 3Ω Resistor for the circuit shown below in Figure **12M** 7 by using Superposition theorem.


Verify Reciprocity Theorem for the network shown in Figure. 8

> 2Ω 2Ω $\geq 2 \Omega$ 20 V $\geq 2 \Omega$ $\gtrsim_{3\Omega}$ **UNIT-V**

- a In a parallel resonance circuit (Tank circuit) $R=2\Omega$, L=1mH and C=10\mu. Find the **6M** 9 Resonant frequency, Dynamic impedance and Bandwidth. **6M**
 - **b** Obtain the expression for resonant frequency for parallel RL-RC circuit.

OR

In a parallel Resonant circuit shown in Figure, find the Resonant frequency, Dynamic **12M** 10 impedance, Bandwidth, Q-factor and Current at resonance.

12M

R19